Question	Кеу	Marks	Guidance
1	В	1	
2	D	1	

Q	uesti	on	Answer	Marks	Guidance
3	(a)	(i)	C₄H ₇ C <i>l</i> ✓	1	
		(ii)	Cl ,	1	DO NOT ALLOW non-skeletal formulae
		(iii)	(compounds with) the same (molecular) formula AND different structures / structural formulae / arrangement of atoms / displayed formulae ✓	1	ALLOW same number of atoms of each element ALLOW different carbon backbone DO NOT ALLOW different spatial arrangement (of atoms)
	(b)		$n = \frac{pV}{RT} = \frac{(100 \times 10^3) \times (1.053 \times 10^{-3})}{8.314 \times 350} \checkmark$ $n = 0.0362 \text{ mol }\checkmark$ $M = \frac{m}{n} = \frac{1.321}{0.0362} = 36.5 \text{ (g mol^{-1}) }\checkmark$ <i>Identity</i> HCl \checkmark	4	
	(c)	(i)	From Reaction 1 = $\begin{array}{c} H & H \\ H - C - C - CH_{3} \\ I & I \\ H & CH_{2}Cl \\ \downarrow \\ Cl - C - C - CH_{3} \\ I & I \\ Cl_{2}Cl_{2} \\ \downarrow \\ H & CH_{2}Cl_{3} \\ \downarrow \\ H & CH_{2}Cl_{3} \\ \downarrow \\ H \\ \end{array}$	2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous

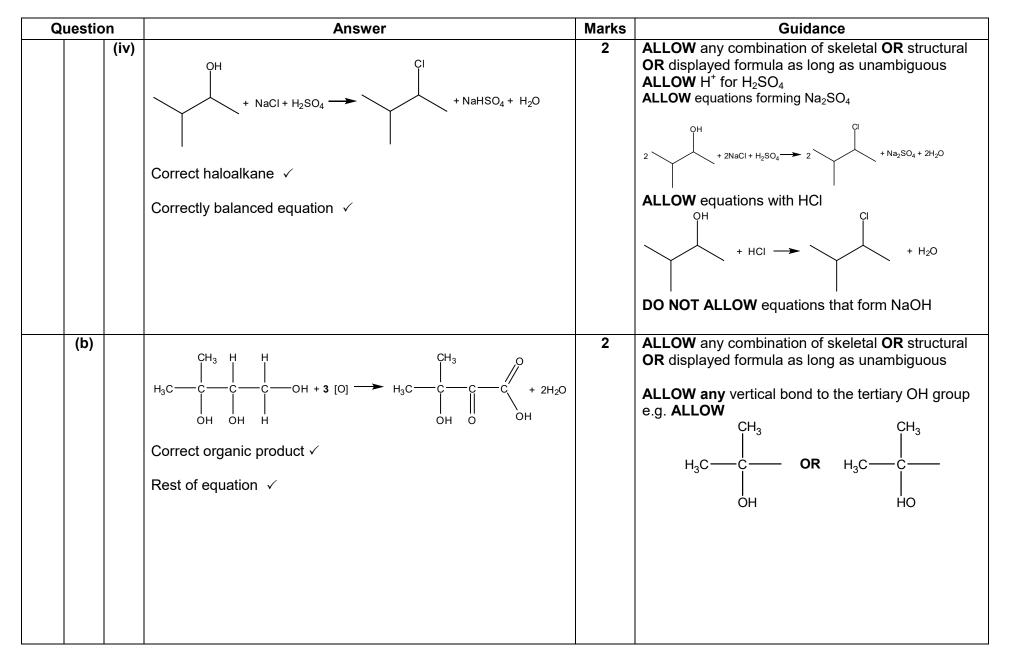
Mark	Scheme
------	--------

Question	n		Answer	Marks	Guidance
	(ii)	$H CH_{3}$ $C = C CH_{2}Cl$ $H CH_{2}Cl$ $H H$	Curly arrow from C=C to attack the H atom \checkmark	3	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous Curly arrow must start from covalent bonds and not atoms
			Correct dipole on H—C l AND curly arrow from bond to C $l \checkmark$		DO NOT ALLOW any other partial charges <i>e.g.</i> shown on double bond
		H = C + C + C + C + C + C + C + C + C + C	Correct carbocation/carbonium ion with full positive charge shown AND correct curly arrow from negative charge of $C\Gamma$ to correct carbon atom OR correct curly arrow from lone pair of $C\Gamma$ to correct carbon atom \checkmark		DO NOT ALLOW C^{δ^+} for charge on carbonium ion. Curly arrow from Cl^- can start from the negative charge or the lone pair DO NOT ALLOW delta negative, <i>i.e.</i> Cl^{δ^-}
((iii)		$\frac{\text{diate/carbocation}}{\text{stable}}$ (than the intermediate in the nd A) \checkmark	1	
((iv)	H $C=C$ H CH_2OH (Formation of) <u>white</u> AND (ppt is) silver ch	precipitate/solid/suspension nloride/AgC1 ✓	2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous

Quest	ion	Answer	Marks	Guidance
(d)		Use of elemental analysis data	5	
		СНО		
		<u>%</u> 46.1 7.7 46.2		
		mol 3.84 7.7 2.89 ratio 1.33 2.66 1		
		atom ratio with calculation \checkmark empirical formula = C ₄ H ₈ O ₃ \checkmark		
		<i>IR spectrum</i> (very) <u>broad</u> absorption 2500–3300 cm ⁻¹ (COOH) AND absorption 1640–1750 cm ⁻¹ (C=O) \checkmark absorption 3450 cm ⁻¹ (alcohol –OH) \checkmark		ALLOW any values given within ranges given on Data Sheet
		Identification		
		conclusion from data: compound contains –COOH and –OH (empirical formula confirms no other C=O than in COOH) in place of the previous chlorine-containing groups		
		H OH I I H−C−C−CH ₃ I I H COOH ✓		ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous
		Total	20	

Question Marks Guidance Answer (a) Compound A (is branched so) has less points of contact / Both answers need to be comparisons 4 less surface interaction between molecules ✓ **ALLOW ORA** throughout 2 **DO NOT ALLOW** 'more contact between atoms' **IGNORE** van der Waals' forces/VDW for induced dipole-dipole interactions (ambiguous as this term refers to both permanent dipole - dipole and induced dipole-dipole forces) Induced dipole-dipole interactions / London (dispersion) ALLOW fewer induced dipole-dipole interactions. forces are weaker. AND **IGNORE** it is easier to break the induced dipole-Require less energy to break (these interactions / forces) ✓ dipole / London forces. (reference to energy required) **IGNORE** less energy required to separate molecules **IGNORE** less energy is needed to break the bonds. Hex-3-en-1-ol ✓ ALLOW Hex-3-ene-1-ol (b) (i) 1 ALLOW 1-hydroxyhex-3-ene as this is unambiguous Hex-3-enol is **not** sufficient **IGNORE** lack of hyphens, or addition of commas

	Mark Scho	eme	
Question	Answer	Marks	Guidance
(ii)	Same structural formula AND Different arrangement (of atoms) in space OR different spatial arrangement (of atoms) ✓	1	 ALLOW have the same structure/displayed formula/skeletal formula DO NOT ALLOW same empirical formula OR same general formula IGNORE same molecular formula Reference to <i>E/Z</i> isomerism or optical isomerism
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	 is not sufficient ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW one mark if both stereoisomers of compound C are shown but in the incorrect columns ALLOW one mark for correct stereoisomers of compound C in correct columns where – CH₂CH₂OH is represented as -C₂H₅O or – C₂H₄OH DO NOT ALLOW incorrect connectivity e.g. – CH₃CH₂ on first occasion but allow ECF in second structure.


	Mark Sch	eme	
Question	Answer	Marks	Guidance
(C)	Two p-orbitals shown as a "dumb-bell" added to structure on left. AND π-bond on structure on right ✓	1	DO NOT ALLOW C=C in diagram DO NOT ALLOW overlapping p orbitals on left hand side in the diagram. DO NOT ALLOW a diagram that contains four lobes on the right hand side. e.g. IGNORE any atoms joined to the bonds Note: labels are not required ALLOW the following diagram to show the π- bond (π-bond)
(d) (i)	(The H atom of HBr) accepts a pair of electrons \checkmark	1	
(ii)	$\begin{array}{ c c c c c c c } \hline CH_3 & CH_2CH_3 & CH_3 & CH_2CH_3 \\ \hline H_3C & \hline C & C & H & H_3C & \hline C & C & H \\ \hline H_3C & \hline C & H & H_3C & \hline C & C & H \\ \hline H_3C & H & Br & \checkmark & Br & H & \checkmark \end{array}$	2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW in either order

Widi k Schenne					
Question	Answer	Marks	Guidance		
(iii)	Curly arrow from C=C bond to H of H–Br \checkmark	3	ANNOTATE ANSWER WITH TICKS AND CROSSES		
	Correct dipole shown on H–Br AND curly arrow showing the breaking of H–Br bond \checkmark CH ₃ CH ₂ CH ₃		ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous		
	$\begin{array}{c} & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$		DO NOT ALLOW partial charges shown on C=C double bond (the second marking point)		
	$CH_{3} \xrightarrow{CH_{2}CH_{3}}_{H} \xrightarrow{CH_{2}CH_{3}}_{H} OR \xrightarrow{CH_{3} \xrightarrow{CH_{2}CH_{3}}_{H}}_{CH_{3} \xrightarrow{C} \xrightarrow{CH_{2}CH_{3}}_{H}}_{H}$		DO NOT ALLOW δ + on C of carbocation Curly arrow must come from a lone pair on Br ⁻ OR from the negative sign of Br ⁻ ion (then lone pair on Br ⁻ ion does not need to be shown)		

			Mark So	cheme	
Q	Question		Answer		Guidance
		(iv)	$H_{3}C \xrightarrow{CH_{3} CH_{2}CH_{3}}_{H_{3}C} \xrightarrow{H_{2}CH_{3}}_{H_{3}C}$ $H_{3}C \xrightarrow{C}_{H_{3}}_{H_{3}}$ Br H 2-bromo-2-methylpentane AND	1	 Note: the correct product and explanation are both required for the mark The major product may be identified by its corresponding letter (E or F) from the table in (d)(ii) correct structure correct name
			(the) carbocation intermediate (in the formation of 2- bromo-2-methylpentane) is more stable (than the carbocation in the formation of the other product) \checkmark		DO NOT ALLOW product comes from the more stable secondary or primary carbocation IGNORE explanations based on Markownikoff's rule.
	(e)	(i)	$n(\text{myrcene}) = \frac{204 \times 10^{-3}}{136.0} = 1.5(0) \times 10^{-3} \text{ (mol)} \checkmark$	2	Correct working required for the first marking point.
			Volume of H ₂ = $3 \times 1.5(0) \times 10^{-3} \times 24000$ = $108 \text{ (cm}^3) \checkmark$		ALLOW ECF from incorrect moles of myrcene i.e. $n(myrcene) \times 3 \times 24000$ Common incorrect answers 108000 cm ³ = 1 mark (not converted to g) 12cm ³ = 1 mark (divided by 3) 36 cm ³ = 1 mark (not multiplied by 3) IGNORE Calculations based on $pV = nRT$

	Mark Scheme					
Question	Answer	Marks	Guidance			
(ii)	Amount of hydrogen	4				
	$n(H_2) = \frac{5.28}{24.0} = 0.22(0) \text{ (mol) } \checkmark$		ALLOW Evidence of $n(H_2) = \frac{5.28}{24.0}$ if 0.22 is not seen			
	Number of double bonds					
	$=\frac{0.220}{0.0200}=11 \checkmark$		Evidence for 11 double bonds could come from 11 H_2 in equation			
	Formula of saturated product					
	C ₄₀ H ₇₈ ✓		Formula could be shown as the product of an			
	Equation		equation			
	$C_{40}H_{56} + 11H_2 \longrightarrow C_{40}H_{78} \checkmark$					
			ALLOW ECF from $C_{40}H_{82}$ and $C_{40}H_{80}$ only i.e. $C_{40}H_{60} + 11H_2 \longrightarrow C_{40}H_{82}$ $C_{40}H_{58} + 11H_2 \longrightarrow C_{40}H_{80}$			
	Total	20				

Qu	estion	Answer	Marks	Guidance
5	(a) (i)	3-methylbutan-2-ol ✓	1	IGNORE lack of hyphens or addition of commas ALLOW 3-methylbutane-2-ol DO NOT ALLOW 2-methylbutan-3-ol OR 3-methylbut-2-ol OR 3-methbutan-2-ol OR 3-methybutan-2-ol OR 3-methlybutan-2-ol
	(ii)	(CH ₃) ₂ CHCHOHCH ₃ ✓	1	ALLOW brackets around OH e.g. (CH ₃) ₂ CHCH(OH)CH ₃ ALLOW any unambiguous structural formula e.g. CH ₃ CH(CH ₃)CHOHCH ₃ CH ₃ CH(CH ₃)CH(CH ₃)OH
	(iii)	One mark for each correct structure.	2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW in either order

Question	Answer	Marks	Guidance
(c)	Product from excess CH_3OH/H_2SO_4 H_3COOC	3	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous e.g OOC IGNORE connectivity in each product ALLOW the <i>E</i> or <i>Z</i> isomer as product from excess CH_3OH/H_2SO_4
	Product from steam, H ₃ PO ₄ HOOC COOH		
	H COOH HOOC COOH H COOH HOOC COOH C C H C H H HOOC H HOOC H H		 'End bonds' MUST be shown (do not have to be dotted) IGNORE brackets IGNORE n ALLOW more than one repeat unit but has to be a whole number of repeat units
	Total	11	